
www.manaraa.com

ORIGINAL PAPER

A User-Centered, Object-Oriented Methodology
for Developing Health Information Systems: A Clinical
Information System (CIS) Example

Georgios Konstantinidis & George C. Anastassopoulos &

Alexandros S. Karakos & Emmanouil Anagnostou &

Vasileios Danielides

Received: 18 January 2010 /Accepted: 5 April 2010 /Published online: 23 April 2010
Springer Science+Business Media, LLC 2010

Abstract The aim of this study is to present our perspectives
on healthcare analysis and design and the lessons learned
from our experience with the development of a distributed,
object-oriented Clinical Information System (CIS). In order
to overcome known issues regarding development, imple-
mentation and finally acceptance of a CIS by the physicians
we decided to develop a novel object-oriented methodology
by integrating usability principles and techniques in a
simplified version of a well established software engineering
process (SEP), the Unified Process (UP). A multilayer
architecture has been defined and implemented with the
use of a vendor application framework. Our first experiences
from a pilot implementation of our CIS are positive. This

approach allowed us to gain a socio-technical understanding
of the domain and enabled us to identify all the important
factors that define both the structure and the behavior of a
Health Information System.

Keywords User-centered . Object-oriented methodology .

UML . Clinical information system .

Multi-layer architecture

Introduction

The slow acceptance of clinical information systems is
somewhat of an anomaly given the rapid diffusion of most
other health care technologies [1–4]. This unique phenomenon
has thoroughly been studied and three major parameters have
been identified: Inability to conceive the health domain
unique nature [5–13], software design weaknesses [14–17]
and finally inability to win stakeholders’ (physicians, nurses,
administrative personnel, management) approval [18–26].

It is more and more acknowledged that a sociological
understanding of the complex practices in which informa-
tion technologies are to function is crucial [27]. The
dynamic complexity of health organizations cannot be
captured through traditional waterfall (sequential) lifecycle
processes. These processes are strongly associated with
high rates of failure, lower productivity, and high defect
rates. According to Berg’s socio-technical approach, “be-
cause of the political nature of these processes and the
importance of the user, and because of the fundamentally
unpredictable nature of these change processes, an iterative
approach to development is required. Starting with central
organizational needs, systems have to be developed step by
step, so that the changes in technology and work practices

G. Konstantinidis (*) :V. Danielides
ENT (Ear Nose Throat) Department, Medical School,
Democritus University of Thrace,
Alexandroupolis, Greece
e-mail: georgios.konstantinidis@gmail.com

V. Danielides
e-mail: vdanielidis@hotmail.com

G. C. Anastassopoulos
Medical Informatics Laboratory, Medical School,
Democritus University of Thrace,
Alexandroupolis, Greece
e-mail: anasta@med.duth.gr

A. S. Karakos
Department of Electrical and Computer Engineering,
Democritus University of Thrace,
Xanthi, Greece
e-mail: karakos@ee.duth.gr

E. Anagnostou
ENT (Ear Nose Throat) Department, Nikaia General Hospital,
Piraeus, Greece

J Med Syst (2012) 36:437–450
DOI 10.1007/s10916-010-9488-x

www.manaraa.com

can evolve together” [12]. An iterative software engineering
process (SEP) can more easily adapt to the needs of a
rapidly changing domain, such as healthcare. A SEP is the
process in which we turn user requirements into software, a
set of project phases, stages, methods, techniques, and
practices that people employ to develop and maintain
software and its associated artifacts (plans, documents,
models, code, test cases, manuals, etc.).

The Unified Software Development Process (USDP)
[28] is an iterative SEP from the authors of the Unified
Modeling Language (UML) [29]. It is commonly referred
to as the Unified Process or UP. Rational Unified Process
(RUP) is a commercial version of UP [30]. Both standard
UML and standard UP or RUP can be very complex and
can drive a project to analysis paralysis. UML describes
thirteen different types of diagrams while UP and RUP
suggest a huge number of activities and artifacts. Hansen G.
K. et al present a review and a systematic assembly of
existing studies on tailoring and introduction of RUP [31].
According to their study, RUP is out of the box too
complex; tailoring it to specific needs is also too complex.
Only few or none (reported) success stories exist.

Moreover, there are known issues regarding proper
requirements eliciting and usability of Health Information
Systems. UP (requirements workflow), defines specific
tasks such as “Find actors and use cases”, “Prioritize use
cases”, “Detail a use case” or “Structure the use case
model” but does not specify methods for finding functional
and non-functional requirements, prioritizing requirements
or tracing requirements to use cases. Research, outside
healthcare domain, investigating the integration of usability
activities into a software development process [32–35]
perceived usability as being a function of the interface and
did not mention the impact of software architecture in
developing usable systems. John and her colleagues [36], in
a comparison of the ISO 13407 Human-centered design
processes for interactive systems [37] to the Rational
Unified Process (RUP) indicate that best practices for
software development teams emphasize the fact that the
RUP is considered architecture-centric and does not
adequately take into account user concerns, while ISO
13407 does not consider the role of software architecture in
fulfilling usability requirements. In our opinion, neither
RUP nor ISO 13407 can effectively describe and imple-
ment a robust and usable Healthcare Information System
(HCIS). A novel approach combining the object-oriented
nature of RUP with the user-centric character of ISO 13407
is needed for this purpose.

In this paper, we illustrate how we overcame the issue of
complexity during the development of a CIS, by introduc-
ing a more laconic approach that uses a minimal, yet
sufficient core subset of UML (four diagram types) with the
addition of robustness diagrams (borrowed by the ICONIX

process [38]), as well as a limited number of activities and
artifacts, compared to standard UP or RUP. In addition, we
present usability techniques integrated in our SEP that
cover the whole project lifecycle and improve user
acceptance. We also present the multilayer architecture of
the ENTity CIS. This is an ENT (Ear, Nose and Throat)
CIS, built with our SEP, to cover the needs of a Greek
General Hospital ENT Department.

Methods

The unified process

In accordance with UP we divided our project life cycle
into four phases—Inception (life cycle objectives), Elabo-
ration (life cycle architecture), Construction (initial opera-
tional capability) and Transition (product release)—each of
which ended with a major milestone. Within each phase we
have had one or more iterations, and in each iteration we
have executed the five core workflows. The five core
workflows are: Requirements—capturing what the system
should do, Analysis—refining and structuring the require-
ments, Designing—realizing the requirements in system
architecture, Implementation—building the software, and
Test—verifying that the implementation works as desired.
Each phase ended with a milestone that consisted of a set of
conditions of satisfaction, and these conditions involved the
creation of a particular deliverable.

We chose a very simple format for stating requirements
elicited from our fact-finding techniques. Each requirement
has a unique identifier (a number), a subject (The system), a
keyword (shall), and a statement of function.

< id > The < system > shall < function >

Figure 1 shows the metamodel for our approach to
requirements engineering in this project.

We chose to categorize our requirements according to
the FURPS + system, a useful mnemonic with the
following meaning: Functional—features, capabilities,
security, Usability—Human factors, help, documentation,
Reliability—frequency of failure, recoverability, predict-
ability, Performance—response times, throughput, accuracy,
availability, resource usage, Supportability—adaptability,
maintainability, internationalization. The “+” in FURPS +
indicates ancillary and sub-factors, such as: Implementation—
resource limitations, language and tools, hardware, Interface—
constraints imposed by interfacing with external systems,
Operations—system management in its operational setting,
Packaging, Legal—licensing and so forth. We decided that
each requirement should have a set of attributes that captures
extra information (metadata) about the requirement. These

438 J Med Syst (2012) 36:437–450

www.manaraa.com

attributes are: Priority—We chose here to follow the MoSCoW
criteria according to which the priority attribute can take one of
the values M (must have), S (should have), C (Could have) or
W (want to have), Source—An attribute that specifies the
origin of the requirement (staff member) and Status—An
attribute indicating the status of the requirement.

However, UP is an extensible framework that comprises
far more activities than any person or organization requires.
For this reason, this generic process had to be customized
in order to adjust to the needs of a specific project, such as
a clinical information system. We chose to use 4 out of the
13 diagrams offered by UML and produce only a subset of
the artifacts proposed by the UP class diagrams to describe
the static model and use case diagrams, robustness
diagrams, sequence diagrams and state machine diagrams
to describe the dynamic model.

During use case analysis we followed a concrete use
case style from the very beginning of the project. In this
style, user interface decisions, as presented by GUI story-
boards and realistic prototypes, are embedded in the use
case text. We tried to present not only what the actors need
the system to do, but also how the system should do it, in
relation to the User Interface (UI) provided by the UI
prototypes. This practice comes in contrast with the
essential writing style proposed by several writers including
Constantine [39] where the narrative is expressed at the
level of the user’s intentions and system’s responsibilities
rather than their concrete actions. However, we found that
the use of a concrete use case style saved us a lot of

valuable time and made easier the transition from require-
ments to design and code, preventing “analysis paralysis”.

We used a direct 1:1:1 correlation between the steps
described in the use case text, the flow of action in the
robustness diagram and the flow of action in the sequence
diagram. In fact, robustness diagrams do not belong to the
set of diagrams offered by UML. They were first described
by Doug Rosenberg and Kendall Scott [40] and they were
later used as part of the ICONIX process [38]. A robustness
diagram is somewhat of a hybrid between a class diagram
and an activity diagram, a pictorial representation of the
behavior described by a use case, showing both participat-
ing classes and software behavior, although it intentionally
avoids showing which class is responsible for which bits of
behavior. In a way it connects the dynamic with the static
model, it bridges the gap between analysis and design.
Sequence diagrams show in a more detailed way how the
classes will interact with each other. We tried to make them
precise so that a detailed design that works within the
technical architecture we defined can be derived.

Class diagrams show the system’s classes, their attributes
and the relationships between the classes. State diagrams
describe a sequence of states and the state changes of a
class. They display processes that refer to the lifecycle of a
class instance. For this reason, state diagrams are always
bound to a class.

In Fig. 2, we see a graphic representation of the
Development Case for the Entity project. This figure uses
as background the figure adopted from Jacobson et al [28]

Fig. 1 Requirements metamodel for the ENTity project

J Med Syst (2012) 36:437–450 439

www.manaraa.com

representing the five core workflows that take place over
the four UP phases. The Development Case is a UP artifact
itself and a description of the customized UP steps and
artifacts for our project. Along the top we have the phases of
the UP while down, on the left-hand side, we have the five
core workflows. Along the bottom we have some iterations.
The curves show the relative amount of work done in each of
the five core workflows as the project progresses through the
phases. The blue round rectangles show themodels, diagrams,
methods and UP artifacts produced during the project
lifecycle and their estimated duration.

Usability methods

One of our main goals during the development of the
ENTity CIS was to incorporate usability principles into the
product lifecycle. This was accomplished by employing
techniques, processes and methods that focus on the
potential user. Before each activity we created an activity
proposal and an activity protocol asking users to sign a
confidentiality agreement and a consent form. In Fig. 3, we
see the usability methods incorporated into the ENTity CIS
in relation with the phases of the project lifecycle.

Usability competitive analysis

A usability competitive analysis proved to be an excellent
shortcut that quickly provided us with a range of viable
design solutions (organizational schemes, labeling, forms
layout, functionality and content) and potential features

before we even visited the hospital and conducted the initial
field studies. We defined a set of criteria that would help us
evaluate each software product. Those evaluation criteria
were aesthetic appeal, forms, help, usability and accessibil-
ity and time-speed.

As we were conducting the competitive analysis we
created a grid comparing the “competitors’” products
according to our evaluation criteria. This grid also
contained features that were identified and could be
implemented within our Clinical Information System as
well as the specifications of each software product. We can
see a detail from this grid in Table 1.

Fig. 2 Graphical representation
of the Development Case for the
ENTity project

Fig. 3 Usability Methods incorporated into the ENTity CIS in
relation with the phases of the project lifecycle

440 J Med Syst (2012) 36:437–450

www.manaraa.com

Table 1 Detail from the grid created during usability competitive analysis

Company A Company B Company C Company D Company E Company F

Aesthetic appeal

Overall visual organisation 7 9 14 13 20 22

Balance 6 8 15 14 18 20

Color scheme 5 8 13 14 19 21

Contrast 9 9 14 15 20 23

Imagery 5 5 12 16 21 20

Design identity 5 5 15 18 18 22

Forms Layout

Consistency 7 7 13 16 16 20

Organisation 10 11 17 16 18 20

Balance 7 8 16 15 19 22

Presentation 5 7 15 16 18 20

Functionality 10 10 14 16 18 21

Help/Instruction

Quantity of help options 7 8 17 18 20 22

Embedded help options 8 8 18 18 21 23

Display 6 7 15 16 20 23

Organisation 6 6 14 15 18 22

Quality 9 8 14 16 19 19

Presentation 6 6 15 14 20 23

Usability and accessibility

Visibility of system status 5 5 12 14 20 21

Match between the system
and the real world

5 6 11 11 17 16

User control and freedom
(support of undo and redo)

5 5 5 14 21 21

Consistency and standards 6 5 9 12 16 22

Error prevention 6 7 12 11 17 23

Recognition rather than recall 9 12 14 16 13 20

Flexibility and efficiency
of use

8 8 15 12 18 21

Help users recognise,
diagnose and recover
from errors

6 7 12 12 17 23

Time (Speed, up to date information)

Speed 15 17 15 20 22 24

Up to date information 17 18 18 20 21 22

Overall

200 220 251 408 505 579

Specification

Operating system-server No server No sever Windows Sever
2003 or newer

Windows Server
2003 or newer

Windows Server
2003 or newer

Windows Server
2003 or newer

Operating system-client Windows OS Windows OS Windows OS Windows OS Any OS Any OS

Architecture Client only Client only Client-Server Client-Server multi-tier multi-tier

Programming language MS ACCESS
97/2003

MS ACCESS
97/2003

Delphi 2007 Visual Basic C# Visual Basic-
Visual C++

Database MS ACCESS
97/2003

MS ACCESS
97/2003

Interbase MS SQL Server MS SQL Server Oracle SQL
Server

Core Features:

Historical record keeping + + + + + +

Bed availability estimation − − − + + +

Operative reports − − + + + +

J Med Syst (2012) 36:437–450 441

www.manaraa.com

Deep hanging-out analysis

A technique we used during the first iterations of the inception
phase in order to elicit our project’s requirements is a field
study method called Deep Hanging-Out Analysis. This is
based on an observation only approach that provides structure
by suggesting focus areas and things to observe. Researchers
from Intel developed this method by applying anthropological
techniques to field research [41]. The ten focus areas we

decided to study for our project were those originally
proposed by the developers of this method: family and kids,
food and drinks, built environment, possessions, media
consumption, tools and technology, demographics, traffic,
information and communication access, and overall experience.

Data was collected at different times in a day and during
different days of a week. Observation initiated from the
very beginning of the process and maps describing the
environment of our users were created. In Fig. 4, for

Table 1 (continued)

Company A Company B Company C Company D Company E Company F

Operation’s booking − − − − + +

Vital signs recording + + + + + +

Nursing flowsheet − − − + + +

Patients admissions + + + + + +

Patient inflow, waiting
time, crowding

− − − − − +

Seek out specific information
from patient records

+ + + + + +

Keep the results from new
test or investigations

+ + + + + +

Fig. 4 Map of the inpatient clinic created during Deep Hanging-Out Analysis

442 J Med Syst (2012) 36:437–450

www.manaraa.com

example, we see a map of the inpatient clinic created
during Deep Hanging-Out Analysis. Various artifacts
(objects, items or papers users use to complete their task
or produced as a result of their tasks) were collected
during the time of observation. Potential hazards, dangers
and obstacles during the execution of a task were
recognized. Several photos and videos were also taken.
For each focus area the responsible team member handed
on a report which was revisited and further elaborated
through the Inception and Elaboration phases of the
project.

Several of the focus areas we selected are rarely studied
and usually neglected during HCIS analysis. However, we
cannot stress enough their importance for identifying
requirements, often “hidden” among core healthcare pro-
cesses, but critical for the success of the project. For
example, in our ENT CIS project, the study of the “family
and kids” sector revealed a major security requirement, not
initially identified during process analysis. In this case, the
lack of nurse personnel, which is an important parameter
that characterizes the Greek healthcare system in general
(only one nurse for 20 beds during the night shift, for the
Department where the study took place) required a third
person, not a member of the staff (usually a patient’s
relative), to spend the night near the patient’s bed. This
person had to be recorded and provided with a security
clearance by the system, for the period of time the specific
patient was hospitalized.

Process analysis (PA)

Process Analysis is another field method for identifying
processes. Here, unlike Deep Hanging-out Analysis, inter-
action with the user plays an important role. The enquirer
visits the user environment in order to understand the
context of his/her actions. A master-apprentice relationship
with the user is developed and results are interpreted with
the participant in order to be used later. Focus is given on
identifying processes. For this purpose, the participant is
asked to answer a series of predefined questions when a
certain process is identified (e.g. When does the first task in
the process happen? What triggers it? etc.). Processes
recognized during Process Analysis were marked on site
maps created during the Deep Hanging-Out analysis. Data
from PA helped us create user profiles and scenarios. User
profiles were also added to the site maps and processes
were attributed to the user profile that was responsible to
execute them. User profiles evolved to use case actors
while scenarios were further detailed and structured to
produce use case scenarios. In Fig. 5, we see processes
executed by a specific user profile in an office of the
inpatient clinic. A detail (doctors’ office) from the map in
Fig. 4 has been used.

GUI storyboards and realistic prototypes

GUI storyboards were produced from the very beginning
of the project and evolved to realistic prototypes.
Prototypes proved to be an excellent method in early
stages of development to evaluate the first user interface
designs and validate the usability of the system. They
were substituted later in our testing process (usability
tests and heuristic evaluations) by early editions of the
final system.

Usability tests

Usability tests were conducted during Iteration 4, Iteration
8 and Iteration 12. Five end users took part in each usability
test. Representative tasks, deriving from scenarios and use
cases developed earlier in the design process, were
combined in order to build 10 real life test scenarios. Every
scenario included processes identified in many different
settings of the ENT department and the hospital e.g. the
operating room, the ambulatory, inpatient and outpatient
clinics, in order to validate the system’s robustness to
handle different operations. This list of scenarios came
together with criteria for measuring whether the tasks have
been successfully completed. Recording of timing, events,
participant actions, concerns and comments has been done
through logging sheets filled in by the participants at the
end of each scenario. Metrics such as the percentage of
participants who succeeded at each scenario, the average
time to complete each scenario, and the average number of
screens visited in each scenario were calculated. A post-
evaluation questionnaire based on the USE Questionnaire
(1 to 7 rating scale) [42] was used to measure usefulness,
ease of learning, ease of use and user satisfaction and to
provide any additional information participants wanted to
share.

Heuristic evaluations

Heuristic evaluations were conducted during Iteration 6,
Iteration 10 and Iteration 14. Heuristic evaluation is a
method for finding usability problems in a user interface
design so that they can be attended to as part of an
iterative design process. A small team of 3 evaluators
with experience in software development examined the
interface several times, inspected the various dialog
elements and judged their compliance with a list of 13
recognized usability principles (the “heuristics”). These
heuristics are: visibility of system status, match between
the system and the real world, user control and freedom,
consistency and standards, help users recognize, diagnose
and recover from errors, error prevention, recognition
rather than recall, flexibility and efficiency of use,

J Med Syst (2012) 36:437–450 443

www.manaraa.com

aesthetic and minimalist design, help and documentation,
skills, pleasurable and respectful interaction with the user,
and privacy.

For every heuristic evaluation we used a different team
of evaluators, with no previous involvement with the
project, in order to avoid contamination of our results due
to user learning. A system checklist was employed in order
to simplify the team’s work. In addition to the checklist of
general heuristics to be considered for all dialog elements,
each evaluator was also allowed to consider any additional
usability principles or results that could potentially be
related to any specific dialog element. Severity ratings were
collected by means of a questionnaire sent to the evaluators
after the actual evaluation sessions, listing the complete set
of usability problems that have been discovered, and asking
them to rate the severity of each problem. The following 0
to 4 rating scale was used to rate the severity of usability
problems:

0 = I don’t agree that this is a usability problem at all
1 = Cosmetic problem only: need not be fixed unless

extra time is available on project
2 = Minor usability problem: fixing this should be

given low priority
3 = Major usability problem: important to fix, so

should be given high priority
4 = Usability catastrophe: imperative to fix this before

product can be released

The mean of ratings from the 3 evaluators was calculated
for each heuristic.

Results

System architecture

In our project implementation we decided the logical separa-
tion of our application into 5 distinct layers as seen in Fig. 6.

Presentation layer

The purpose of this layer is to present information, record
input from the user or receive other instructions such as
updating the data storage, navigating to other data,
executing reports, etc. We chose a thin-client approach.
So, UI objects only initialize UI elements, receive UI events
(such as a mouse click on a button), and delegate requests
for application logic on to non-UI objects (application layer
objects). We chose to implement this layer as a .NET
application executed on Win32 platform, but the clear
separation of concerns (user interface, application logic,
business logic, data access logic and persistence, each on a
different layer) makes it less work to implement a second or
third presentation layer.

Application layer

The purpose of this layer is handling presentation layer
requests through communication with the data access layer
and providing security mechanisms (Confidentiality, Integ-
rity, Authentication, and Authorization). This includes
presentation layer requests acceptance, transmission of the

Fig. 5 Processes executed from
a specific user profile in an
office of the inpatient clinic

444 J Med Syst (2012) 36:437–450

www.manaraa.com

request to the data access layer, consolidation/transforma-
tion of disparate data imported from the data access layer for
presentation, workflow management, session state manage-
ment etc. The fact that the application layer is implemented
as an ASP.NET XML Web service hosted on an IIS
(Internet Information Service) Server allows invoking
properties and methods of remote objects using standard
HTTP requests. HTTP is a wire protocol that all platforms
can agree on. A .NET client application running on
Windows, a Java client application running on UNIX, a
Java or .NET client application running on Macintosh or a
client application running on Windows Mobile can easily
use the web service through an intervening proxy type. The
proxy’s implementation code forwards requests to the
XML web service using standard HTTP. The proxy also
maps the incoming stream of XML back to the specific
data types required by the consumer application. System
security is safeguarded through IIS built-in security
mechanisms (encryption through signing with SSL—Secure
Socket Layer, mutual authentication over SSL, code access
security).

Business layer

The purpose of this layer is to reflect as accurately as
possible the entities of the business the application is being
designed to emulate (the “Business domain”). These class
entities not only contain properties for holding information
about the business objects, but also methods which are
being executed in order to reflect the behavior of these
entities, as well as domain rules. This layer is implemented
through the use of a vendor application framework, called
ECO framework [43]. ECO uses class diagrams and state
machines to describe the static and dynamic structure of the
domain. Diagrams are permanently synchronized with code
automatically generated by the tool.

Queries to the data access layer and domain rules are
written in ECO OCL and object handling methods in ECO
Action Language. The Object Constraint Language (OCL)
[44] was added as an extension to the UML-Specification
in 1997 by the Object Management Group (OMG). OCL is
supported by ECO both at development stage and runtime.
It is a query language free of side effects that doesn’t

Fig. 6 Architecture of ENTity CIS

J Med Syst (2012) 36:437–450 445

www.manaraa.com

access the database directly. Instead, it simply accesses
objects located in an object manager in the central memory
called EcoSpace. If an object is not available in the
EcoSpace, it will be loaded on demand when needed.
Moreover constraints which limit the contents or semantics
of UML model elements can be defined with the use of
OCL. ECO also uses ECO Action Language (EAL). EAL
is a superset of OCL. It contains all features and operations
of OCL plus an assign operation, list-manipulation
operations, object creation/deletion and sequencing of
statements. It is primarily used to define effects inside
state machines, but it can also be used as a general purpose
scripting language.

Data access layer

The data access layer is the functional crossroad between
the application layer, the business layer and the persistence
storage. This layer is also implemented with the ECO
Framework through the use of EcoSpaces that reflect to
object packages. The data access layer will retrieve data
from the specified data storage and transform this data into
an instance of the relevant class from the business layer,
which will present to the application layer. In addition, it is
responsible for updating the data storage with changes
made to business class instances, and also to delete data
from the persistence storage, where business class instances
have been permanently destroyed. In this layer the complete
runtime management of objects (Catching, Pooling, Syn-
chronization, Transactions, OCL Evaluation etc) takes place.

Persistent storage layer

The persistent storage is responsible for persisting, retriev-
ing, and deleting permanently stored data as instructed by
the data access layer. A persistence mapping system offered
by ECO automatically maps the class model on a relational
database, thus taking care of the fully automatic creation
and updating of the database schema. At runtime, the
persistence mapping system takes care of the transforma-
tion of relational data to class model objects in EcoSpace
and back into the database tables. Persistence storage
independence is offered through the use of persistence-
mapper components for most popular database systems
(Interbase 2007 and later, Oracle v8 and later, MSSQL
server 2000 and later including express editions, MySQL
v4 and later, Firebird v1.5 and later, NexusDB v2, SQLite
and Sybase ASE). This way, ECO almost fully takes over
the task of database design based on the class model. The
system administrator can easily switch between different
persistence stores or determine which type of data storage
to use at runtime according to the user’s application
settings. Moreover objects can be loaded and saved across

multiple persistence stores. Mixed database servers or
distributed transactions are also supported.

Implementation-first experiences

The study was performed in the settings of inpatient and
outpatient ENT clinics of Nikaia General Hospital, a
hospital with 713 beds and an important regional function.
The ENT Department encompasses one inpatient ward with
a total of 20 beds and provides many outpatient clinics both
routine and specialist (Rhinology-Endoscopy Clinic,
Otology-Neurootology Clinic, Cochlear Implantation Clinic,
Facial Nerve Clinic, Otosurgery Clinic, Voice and Swallow-
ing Clinic). For the year 2007, 30208 patients were examined
in the ENToutpatient clinics, 1030 patient were admitted and
1419 operations were performed. There is a team of 1
secretary, 8 nurses, 9 residents, and 6 consultants. This team
collaborates with many ancillary departments, other special-
ists and paramedical personnel. An Excel file consisting
patients’ id, last name, first name, age, date of admission and
diagnosis was created by the physicians in the year 2003.
This data gave the physicians the ability to locate based on
the patient id the hard copies of the admitted patient’s health
record. The hospital despite its size retains no Hospital
Information System and none of the departments of the
hospital kept an electronic medical record. In 2007,
Democritus University of Thrace and the ENT Department
of Nikaia General Hospital decided to collaborate in order to
produce a pilot ENT Clinical Information System, the
ENTity CIS.

The project lifecycle was divided into 16 3-week
iterations (with the exception of the first iteration that
lasted 4 weeks). The project’s duration was 354 days and
the work put into it 6922 hours. 5 people worked in the
project sharing the roles of project manager, analyst,
designer and programmer.

Deep user involvement from the very beginning to the
end of the project, assisted user learning, improved user
understanding of the system and increased user efficacy in
completing important tasks and scenarios. All usability
metrics calculated improved as the project evolved. User
satisfaction also improved (Fig. 7). Moreover, multiple
heuristic evaluations proved an increase of the system
overall usability through time (Fig. 8).

In January 2009, the development team and the
physicians decided to proceed with a pilot implementa-
tion of the ENTity CIS in the inpatient clinic and in two
of the outpatient clinics (Voice and Swallowing clinic,
Otosurgery clinic). Currently the ENTity CIS contains all
desired functionality. The pilot approach was chosen
though, because we wanted to trial the new system over
a period of time before all clinics come on board later
on, when the system has been proven and the users are

446 J Med Syst (2012) 36:437–450

www.manaraa.com

confident in its abilities and performance. Currently 5500
inpatient records dated from 2003 are being transferred
from paper to the ENTity CIS, while every new record
originating from the selected clinics is being recorded
electronically.

Adoption was not an issue and no particular training was
necessary since all users were actively involved in the
project from the early stages of development. A two-days
training program was prepared for every new member of the
department. The trainer is always a current member of the
team. Particularly encouraging is a general sense of
excitement from the first days of implementation when
talking to active users. Curiosity and interest was also
expressed from personnel coming from different depart-
ments of the hospital.

Discussion

For the development of the ENTity CIS we created a user-
centered, object-oriented methodology based on a success-
ful open standard (UP). ISO 13407 provides guidance on
achieving quality in use by incorporating user-centered

design activities throughout the life cycle of software
systems, but it does not address in detail, the level of effort
required or the process of selecting the proper activities for
a specific project. Moreover, it is not connected to a
software design environment or a development process, and
it does not provide any implementation or testing phases
and activities. The proposed, in this paper, approach in
software design, has several additional advantages com-
pared to ISO 13407 because of the adoption of an object-
oriented software development process in its core. This
process enabled us to standardize our efforts, promoting
reuse, repeatability, and consistency between the members
of our project team. It made easier the assignment of roles
and responsibilities and raised the communication level
between developers and end users. Even people that could
not read code were able to understand what developers
were doing through architectural documents. Second, it
provided an opportunity for us to introduce industry best
practices such as code inspections, enterprise patterns,
configuration management, change control, architectural
modeling and test plans to our software organization. Third,
a baseline approach for greater consistency and future
enhancements was established.

Fig. 7 Usability and user satisfaction metrics produced during usability testing

J Med Syst (2012) 36:437–450 447

www.manaraa.com

An effective software process also improved our
organization’s maintenance and support efforts—also re-
ferred to as production efforts—in several ways. First, it
defined how to manage change and appropriately allocate
maintenance changes to future releases of our software,
streamlining our change process. Second, it defined both
how to transition software into operations smoothly and
how these operations are actually performed. Third, our
project could be scheduled and cost estimated with
sufficient accuracy in order to meet our expectations.

UP or RUP is a SEP that has significantly contributed to
the software development practice. However, from a
usability point of view, it does not provide the support
needed to produce a usable system and problems with the
use of the process have been observed in several projects
[45]. In our effort to overcome this weakness, we have
integrated user-centered design principles into our UP-
based, object-oriented process. This integration offered us a
deeper understanding of the social, financial and psycho-

logical factors affecting the implementation and use of an
electronic patient record. User requirements were better
defined, false starts and late changes were prevented, more
relevant functionality was achieved and more and better
ideas were conceived. Deeper user involvement and testing
was an assurance that our framework is efficient, effective
and in general terms suitable for the intended purpose.
Early use of prototypes made the transition easier and
accelerated full and smooth integration of the product into
the daily practice. Users knew from the beginning what to
expect and felt that their ideas and suggestions are taken
into account. Personal involvement raised the team morale
and optimized user acceptance. Cross-departmental com-
munication and teamwork formed a common understanding
between users and the development team.

However, we did encounter some problems while employ-
ing usability techniques. The amount of data generated was
huge. Filtering, evaluating and translating this data to design
was time and personnel consuming. Tension was sometimes

Fig. 8 Usability issues found during heuristic evaluation and mean of severity ratings for each heuristic calculated from 3 Evaluators

448 J Med Syst (2012) 36:437–450

www.manaraa.com

inevitable since 5 members from the development team and
15 users had to work together almost every day for a long
period of time, communicate effectively and respect each
other’s contribution and expertise. It was particularly hard
finding and isolating contributions characterized by lack of
motivation and attention, intimidation, lack of reliability, false
assumptions, incomplete knowledge, faulty memory, and
domination of conversation or misinterpretation. All these
are factors that can contaminate results if not detected early
enough through testing and multiple evaluations.

The use of an application framework (ECO) in the core
of our architecture felt as the natural way of implementing a
project under an object-oriented SEP, added a lot out-of-
the-box functionality and saved us a lot of time during
development, updating and especially debugging and
testing. The fact that we were able to produce from the
very beginning of the project executable models ensured
that the automatically generated code (almost 70% of our
implementation code) conformed to our architectural/design
patterns and coding guidelines. There was of course a
dedicated test team, extensively unit testing our code and
issuing reports with the bugs fixed in each code generation
phase. However, most of the bugs had been cleaned up in
the models themselves and these bug fixes essentially
rippled throughout all the generated code. In fact, when the
analysis team discovered how quickly they could change
something in the model and get running code, they began
asking for more and more changes. We went through
several code generation phases before the final one and in
the end we delivered a significant number of bug-free lines
of functional code.

In addition, the proposed clear separation of layers allows
multiple areas of the presentation layer to adhere to the same
business rules, and makes it less work to implement different
presentation layers. This makes ENTity CIS a distributed
system with operating system, platform, language and
database interoperability and independence which was a
major non-functional requirement from the beginning of the
project. There is an important limitation though; ECO which
lies in the core of ENTity CIS is a .NET application. It
requires the presence of the .NET Framework on the server
side; it runs on an IIS Web Server and takes advantage of the
ASP.NETWeb Services at communication level (application
layer). No other Server (e.g. APACHE Server) or Web
Service (e.g. Java Web Service) can be used.

The previously described approach for the development
of the ENTity CIS allowed us to gain a socio-technical
understanding of the domain and enabled us to identify all
the important factors that define both the structure and the
behavior of a clinical information system. In addition, we
created a usable, applicable framework and we propose a
software development process that can be used as a basis
for the creation of other Health Information Systems or

Software Systems outside healthcare domain, particularly
when deep user involvement is of paramount importance
for the success of the project.

References

1. Collen, M. F., A history of medical informatics in the United
States, 1950 to 1990: Am. Med. Informatics Assoc., 1995.

2. Laudon, K. C., and Laudon, J. P., Management information
systems. New approaches to organization and technology.
Macmillan, New York, 1998.

3. Wyatt, J. C., Clinical data systems, Part 3: Development and
evaluation. Lancet 344(8938):1682–1688, 1994.

4. Reddy, M., et al., Sociotechnical requirements analysis for clinical
systems. Meth. Inf. Med. 42(4):437–444, 2003.

5. Berg, M., Medical work and the computer-based patient record: a
sociological perspective. Meth. Inf. Med. 37(3):294–301, 1998.

6. Berg, M., and Bowker, G., The multiple bodies of the medical work:
Toward a sociology of an artifact. Sociol. Q. 38(3):513–537, 1999.

7. Berg, M., and Goorman, E., The contextual nature of medical
information. Int. J. Med. Inform. 56(1–3):51–60, 1999.

8. Atkinson, P., and Heath, C., Medical work: realities and routines.
Gower, Farnborough, 1981.

9. Anderson, J. G., and Jay, S. J., Computers and clinical judgment: The
role of physician networks. Soc. Sci. Med. 20(10):969–979, 1985.

10. Anderson, J. G., et al., Physician communication networks and the
adoption and utilization of computer applications in medicine. .
Use and impact of computers in clinical medicine, ed. J.G.
Anderson and S.J. Jay, New York: Springer-Verlag, 1987

11. Berg, M., et al., Considerations for sociotechnical design:
Experiences with an electronic patient record in a clinical context.
Int. J. Med. Inform. 52(1–3):243–251, 1998.

12. Berg, M., Patient care information systems and health care work: A
sociotechnical approach. Int. J. Med. Inform. 55(2):87–101, 1999.

13. Berg, M., Implementing information systems in health care
organizations: Myths and challenges. Int. J. Med. Inform. 64(2–
3):143–156, 2001.

14. Anderson, J. G., Computer-based ambulatory information sys-
tems: Recent developments. J. Ambul. Care Manage. 23(2):53–
63, 2000.

15. Brooke, C., and Maguire, S., Systems development: A restrictive
practice? Int. J. Inform. Manag. 18:165–180, 1998.

16. Atkinson, C. J., and Peel, V. J., Transforming a hospital through
growing, not building, an electronic patient record system. Meth.
Inf. Med. 37(3):285–293, 1998.

17. Hughes, D., WHen nurse knows best: Some aspects of nurse–
doctor interaction in a casualty department. Sociol. Health Illn.
10:1–22, 1988.

18. Kaplan, B., Evaluating informatics applications-some alternative
approaches: Theory, social interactionism, and call for methodo-
logical pluralism. Int. J. Med. Inform. 64(1):39–56, 2001.

19. Laerum, H., Ellingesen, G., and Faxvaag, A., Doctor’s use of
electronic medical records systems in hospitals: Cross sectional
service. BMJ 323(7325):1344–1348, 2001.

20. Mikulich, V. J., et al., Implementation of clinical guidelines
through an electronic medical record: Physician usage, satisfaction
and assessment. Int. J. Med. Inform. 63(3):169–178, 2001.

21. Levitt, J. I., Why physicians continue to reject the computerized
medical record. Minn. Med. 77(8):17–21, 1994.

22. Cork, R. D., Detmer, W. M., and Friedman, C. P., Development
and initial validation of an instrument to measure physicians’ use
of, knowledge about, and attitudes toward computers. J. Am. Med.
Inform. Assoc. 5(2):164–176, 1998.

J Med Syst (2012) 36:437–450 449

www.manaraa.com

23. Scarpa, R., Smeltzer, S. C., and Jasion, B., Attitudes of nurses
toward computerization: A replication. Comput. Nurs. 10(2):72–
80, 1992.

24. Anderson, J. G., Clearing the way for physicians’ use of clinical
information systems. Commun. ACM 40(8):83–90, 1997.

25. Goorman, E., and Berg, M., Modelling nursing activities:
electronic patient records and their discontent. Yearbook of
Medical Informatics, 2002.

26. Bahensky, J. A., et al., HIT Implementation in critical access
hospitals: Extent of implementation and business strategies
supporting IT use. J. Med. Syst., 2009.

27. Rahimi, B., Vimarlund, V., and Timpka, T., Health information
system implementation: A qualitative meta-analysis. J. Med. Syst.
33(5):359–368, 2009.

28. Jacobson, I., Booch, G., and Roombauch, J., The unified software
development process. Addison Wesley, Massachusetts, 1999.

29. Rumbaugh, J., Jacobson, I., and Booch, G., The unified modeling
language reference manual: Addison–Wesley, 2004.

30. Kruchten, P., The rational unified process: an introduction, 3rd
edition. Addison Wesley, Massachusetts, 2003.

31. Hanssen, G. K., Bjornson, F.O., and Westerheim, H., Tailoring
and introduction of the rational unified process in Software
Process Improvement, Springer: Berlin / Heidelberg. 7–18, 2007.

32. Krutchen, P., Ahlqvist, S., and Bylund, S., User interface design
in the rational unified process. Object modeling and user
interface design. Addison Wesley, Boston, 2001.

33. Constantine, L., Biddle, R., and Noble, J., Usage-centered design
and software engineering: models for integration, in International
Conference on Software Engineering (ICSE). 106–113, 2003.

34. Ferre, X., Integration of usability techniques into the software
development process, in International Conference on Software
Engineering: Portland. 28–35, 2003.

35. Sousa, K., and Furtago, E., RUPi-A Unified Process that
integrates human-computer interaction and software engineering,
in International Conference on Software Engineering (ICSE). 41–
48, 2003.

36. John, B. E., Bass, L., and Adams, R. J., Communication across
the HCI/SE divide: ISO 13407 and the Rational Unified Process,
in 10th International Conference on HCI: Crete, Greece, 2003.

37. ISO 13407:1999 Human-centred design processes for interactive
systems.

38. Rosenberg, D., and Stephens, M., Use case driven object modelling
with UML: theory and practice. Apress, Berkeley, 2007.

39. Constantine, L., and Lockwood, L., Software for use: a practical
guide to the models and methods of usage-centered design.
Addison Wesley, Massachusetts, 1999.

40. Rosenberg, D., and Scott, K., Use case driven object modelling
with UML: a practical approach. Addison Wesley, Massachusetts,
1999.

41. Teague, R., and G. Bell., Getting out of the box: ethnography
meets real life: applying anthropological techniques to experience
research. in Usability Professionals’ Association 2001 Confer-
ence. Las Vegas, 2001.

42. Lund, A. M., Measuring usability with the USE questionnaire.
Usability interface. 8(2), 2001.

43. Schmid, A., ECO III, http://www.ecospace.de/en_ecobook.html,
2006, last visited on March 03, 2010.

44. Warmer, J., and Kleppe, A., The object constraint language:
getting your modelw ready for MDA. Addison Wesley, Massa-
chussets, 2003.

45. Gulliksen, J., Göransson, B., and Lif, M., A user-centered
approach to object-oriented user interface design. In: Van
Harmelen, M., (Ed.), Designing Interactive Systems: Object
Modeling and User Interface Design. Addison-Wesley, 2001.

450 J Med Syst (2012) 36:437–450

http://www.ecospace.de/en_ecobook.html

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	c.10916_2010_Article_9488.pdf
	A...
	Abstract
	Introduction
	Methods
	The unified process
	Usability methods
	Usability competitive analysis
	Deep hanging-out analysis
	Process analysis (PA)
	GUI storyboards and realistic prototypes
	Usability tests
	Heuristic evaluations

	Results
	System architecture
	Presentation layer
	Application layer
	Business layer
	Data access layer
	Persistent storage layer

	Implementation-first experiences

	Discussion
	References

